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Dynamic System Synthesis in Terms of Bond Graph Prototypes 
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This paper deals with two synthesis methods for dynamic systems as an application of the bond 

graph prototypes which are originally developed for dynamic system analysis in the frequency 

domain. The first method called the analytical synthesis uses the procedures similar to the 

network synthesis in the electrical field and an already-existing one, but yet demonstrates its 

own strengths inherited from the bond graph prototypes such as the freedom from the causality 

assignment and determination of junction types. The second method called the direct synthesis 

is introduced in this paper to provide physical realization for a given specification of impedance 

and admittance forms without any mathematical manipulations except a simple division. The 

two synthesis methods are shown through examples in each case to be a concise method in their 

usage and a scientific method in managing the bond graph prototypes systematically. 

Key Words: Bond Graph Prototypes, Feedforward and Feedback Expansions, Analytical  

Synthesis Method, Direct Synthesis Method 

1. Introduction 

Dynamic system design and /o r  synthesis have 

been typically concerned with the parameter selec- 

tion and optimization for existing configurations 

of idealized system components. It may be said 

that the design of a dynamic system involves with 

questions such as what the system is to do and 

how it can be done, while the synthesis is chiefly 

associated with the implementation of a system 

function to provide its desired response and even- 

tually the physical structure by which the system 

function can be exactly realized in any single or 

multiple energy domains. 

This paper attempts to make the bond graph 

prototypes (Park and Kim, 1997) stronger and 

more effective in synthesizing a dynamic system. 

The bond graph prototypes have been proposed 

by the authors to reduce bond graph structures 

without any alteration of physical similarity and 

to find some useful properties in the frequency 
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domain (i. e., relative degrees, zero and character- 

istic dynamics, transfer functions etc. ) directly 

from the reduced bond graph. Therefore, the 

methods presented in this paper can naturally be 

thought of as the reverse ones used in dynamic 

system analysis in the sense that the latter focuses 

on the reduction of a given bond graph model, 

while the former the expansion (or the reticula- 

tion) of  a given system function into smaller 

components whose physical equivalents are easily 

recognized (see Fig. 1). 

As the definitions of impedance and admittance 

(Park and Kim, 1997), the given specifications 

are assumed to be linear functions with constant 

coefficients and those consisting only of passive 

elements for applying the bond graph prototypes 

equally to both analysis and synthesis of dynamic 

systems in a dual manner. However, nonlinear 

components may, if required, replace their non- 

linear relationships with linear constitutive laws 

after the synthesis is completed. And the synthesis 

on systems containing active elements has current- 

ly been studied since the invention of operational  

amplifiers. 

Not much work is found on the investigation of  

dynamic system synthesis in terms, of bond 



430 Jeon Soo Park and Jong Shik Kim 
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Dynamic system analysis and synthesis dia- 
grams with respect to bond graphs. 

graphs. Notable exceptions within the limit of  our 

knowledge are Redfield and Krishnan (1993). In 

their researches, more than one bond graph struc- 

ture to meet a single dynamic specification were 

presented particularly for the conceptual design of 

a system which has originally developed to gener- 

ate design concepts or objectives with relatively 

ease even in the face of configurational con- 

straints. However, their procedure to synthesize a 

dynamic system is principally based on some 

views about the signal flow in block diagrams 

rather than the power flow in bond graphs. Thus, 

the method still possesses problems in selecting 

the causality and determining what types of the 

bond graph junctions are best physically reason- 

able. 

In this paper, two synthesis methods are devel- 

oped by using the bond graph prototypes, the 

analytical synthesis and the direct synthesis. We 

show that the analytical synthesis provides some 

troubleshootings for problems left in the 

approach suggested by Redfield et al. And 

through the direct synthesis, in particular, the 

completed synthesis for dynamic systems can be 

obtained with no mathematical manipulations 

except simple division, and the method gives some 

clear information for linking between the analysis 

and synthesis of dynamic systems. Furthermore, 

we will try to explain physically the significant 

notions found in each step of synthesizing 

dynamic systems as possible as we can. 

The remainder of this paper is organized as 

follows: Section 2 discusses electrical network 

synthesis and its bond graphs; section 3 some 

useful properties on system functions given a 

frequency domain input-output  specification of 

impedance or admittance forms. And the analyti- 

cal and direct synthesis methods are developed in 

section 4 by treating the bond graph prototypes as 

a tool for expanding a given specification system- 

atically. Conclusions are offered in section 5. 

2. Network Synthes i s  and Bond 
Graphs 

System synthesis is the opposite of analysis. 

Rather than break a system into parts, it usually 

combines parts into a system. But at the position 

of bond graphs, we may say that bond graph 

analysis is the reduction of the Paynter's bond 

graphs (called in this paper the bond graph 

standards) into the bond graph prototypes and 

bond graph synthesis is the expansion felt as the 

reverse manner as shown in Fig. 1. Thus, it can be 

natural to say that a procedure for bond graph 

synthesis, if developed, should be accomplished 

by the opposite of bond graph analysis. In other 

words, the use of the bond graph prototypes as a 

medium allows the procedure to be more credible 

in the logical sense. However, we first review 

briefly in this section the two famous works on 

network synthesis commonly used in the electrical 

field in order to assist the development of our 

methods with some useful expansion techniques. 

Electrical network synthesis is the generation of 

electrical circuits and networks to meet a desired 

specification in the frequency domain. Of some 

practical methods, we focus mainly on those 

employing partial or continued fraction expan- 

sion techniques by which a specified impedance 

or admittance can be broken into smaller compo- 

nents until each function of the components is 

recognized as representing physical configura- 

tions of a circuit element. As discussed earlier, the 

network may of course either consist of purely 

passive elements or contain active devices. We but 

consider in here only the problem of determining 

a passive network to give a specified system func- 
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tion. In other words, the function's behavior is 

assumed to be achieved by passive systems whose 
transfer functions are termed "positive real." 

Since passive systems, for example, systems con- 
sisting of only inductors, resistors, and capacitors 

in the electrical system and of only masses, 
dampers, and springs in the mechanical system, 

require no active or external source of power, they 

must be characterized by energy dissipation 
related to the input-output behavior and stability. 

A good introduction to the concept of positive 
real is in Anderson (1973) and Tomlinson 

(1991), and we will present some useful prop- 

erties on positive real system functions in the 
following section to begin dealing with dynamic 

system synthesis using bond graph prototypes. 

One method to approach the problem of synthe- 
sis of a network to realize a specified system 

function, which is a positive real and rational 
function, is based on a partial fraction expansion 

(PFE) of the function. For example, a system 

function F(s) with natural frequencies from zero 
to infinity consecutively can be reticulated by the 

PFE into the form 

= k 0 + ~  2kis + .  
F ( s )  s ~ te=s (1) 

In Eq. (1), the first and last terms represent 

poles at zero and infinity, respectively, which can 

be realized directly by a capacitor C and an 

inductor L, simply by inspection of  impedances 

and admittances for passive elements of bond 
graphs. And the second terms represent n pairs of 

imaginary poles which can also be realized by the 

string of the parallel LC combinations. Thus, if F 
(s) is the form of impedance, then Eq. (1) implies 

that each term is combined together with the 1- 
junction to merge the outputs of the capacitor, 

inductor, and the string of LC combinations. 

Figure 2(a) and (b) show the realization of Eq. 
(1) and its bond graph, respectively. In specific, 
the structure like that of Fig. 2(a) is called as 

Foster realizations. 
Another method to approach for synthesizing 

system functions is based on a continued fraction 
expansion (CFE) by extracting a pole of the 
function at infinity and inverting the remaining 

i ( t )  L~ L~, 

v( C~ 
O. 
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Foster realization (a) and its bond graph 
(b). 
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Fig. 3 Bond graphs with tee and pi structures. 

function sequentially. The CFE method can be 

clearly explained with a ladder network, or bond 

graphs containing structures such as pi~ and tees 

(Karnopp et al., 1990). Consider Fig. 3(a) and 
(b) that represent a ladder network and its bond 

graph with a tee structure, respectively. Referring 

to the tee network, the specified impedance Z (s) 
at the driving-port is given by Z1 in series with 

the impedance to the right of Z1 and the latter is 
equal to the inverse of the admittance to the right 

of Z1 which is given by Yz in parallel with the 
admittance to the right of ~ .  Similarly, the 
admittance to the right of Yz is equal to the 

inverse of the impedance to the right of Y2 and 
this impedance is given by Z3 in series; with the 
impedance to the right of Z3. Continuing in this 

way the Z( s )  can be expanded as 
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Fig. 4 Cauer realization (a) and its bond graph 
(b). 

1 
Z (s) = Z1 -t 1 (2) 

Y2q Z 3 + " '  

For the Pi network which starts with a shunt 

element as shown in Fig. 3 (c) and (d) the speci- 

fied admittance Y(s )  can be expressed as 

1 
Y(s )  = Y~-~ 1 (3) 

z ~  y~+ . . .  

Once again, if we specify the impedance specifi- 

cation with natural frequencies of whole ranges as 

Eq, (2), then the first pole at infinity is 

introduced by an inductor with the derivative 

causality and all the remaining poles can also be 

made by dynamic elements with the integral cau- 

sality such as a chain of capacitor and inductor 

pairs because of the nature of inversion. Figure 4 

(a) shows the realization of Eq. (2) which is well 

known as Cauer realizations, and its bond graph 

is involved in Fig. 4(b).  It is also said that for Eq. 

(3) the same realization and bond graph as in 

Fig. 4 are build up except for starting with the 

parallel element instead of with the series element. 

The work of this paper is to extend the above 

two schemes of network synthesis to the bond 

graph domain. With the bond graph prototypes, it 

can be shown that the reduction of a given bond 

graph and the expansion of a given specification 

are straight linked each other. Therefore, the 

bond graph prototypes can be appraised to 

become a versatile means in analyzing and 

synthesizing dynamic systems. 

3. Some Use fu l  Propert ies  of  Pass ive  

Sys tems  

As discussed earlier, the conditions that must 

be satisfied by a rational function which is real- 

ized as the driving-point impedance or admit- 

tance of a passive system are described in the form 

known as the positive real conditions. Therefore, 

we examine in this section some of the inherent 

properties of a positive real function to make use 

of them effectively in synthesizing dynamic sys- 

tems in terms of bond graph prototypes. These 

properties are reviewed by Anderson (1973) and 

Tomlinson (1991) in the context of network 

theory and Slotine (1991) in the analysis of 

nonlinear systems, and so on. 

System functions F (s) of a passive system must 

mathematically be positive real which is expres- 

sed by 

Re[F(s )~_>0 for all Rels  ] ~>0 (4) 

Geometrically, Eq. (4) means that the rational 

function F(s )  maps every point in the closed 

right half including the imaginary axis of the 

complex plane into the closed right half of the F 

(s) plane, i. e., the real part of the magnitude of 

F(s )  is greater than or equal to zero when the 

real part of s is greater than or equal to zero, and 

the phase shift of F(s )  in response to a 

sinusoidal input is always remained between -90 

~ and 90 ~ These features are straightforwardly 

incorporated into the Nyquist plot of F (rio). As a 

rule, the conditions that the Nyquist plot of a 

function exists in the closed right-half plane 

impose on the function utterly important or prac- 

tical constraints such that all the roots of the 

numerator and denominator polynomials of the 

rational function F(s )  must be in the left-half 

plane. This is also known as passivity conditions 

of a system function which generates no energy 

but dissipates it. According to the Routh-Hurwitz 

stability criterion, all the coefficients of both the 

numerator and denominator polynomials must be 

positive real values in order that their roots (the 

zeros and poles of the system function) are in the 

left-half plane. This implies simple necessary 
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conditions for asserting whether a given system 

function F(s) is realized only by passive ele- 

ments: F(s) is stable and minimum-phase.  In 

addition, by recalling the procedure for construct- 

ing Nyquist frequency response plots, the relative 

degree which is defined as the difference between 

the order of the denominator and that of the 

numerator of the F (s) must be between plus and 

minus unity so that the Nyquist plot remains in 

the r ight-half  plane at high frequencies. 

To make the above properties on a positive real 

function useful for synthesizing dynamic systems 

using bond graphs, we now inspect the relations 

between these properties and a realizable function 

representing the behavior of components in the 

bond graph structures. In fact, the realizable func- 

tion should be produced in each step of reticula- 

tion from a system function which is specified in 

the form of impedance or admittance, so it still 

remains positive real to ensure the conditions like 

that the function is stable and minimum-phase.  

and its relative degree is between -1 and 1. At this 

point, it must be emphasized that the first two 

requirements can be verified independently by the 

investigation of whether the numerator and 

denominator polynomials of a function are the so- 

called Hurwitz polynomial  which satisfies the 

Routh-Hurwitz  stability criterion. But the last 

indicates the mutual dependency of numerator 

and denominator polynomials. This means that 

the prescribed knowledge of one of the two 

polynomials determines the form of the other. 

Accordingly, synthesizing a positive real function 

into components which is also positive real is 

perfectly controlled by whether the information 

easily recognizable enough to apply other 

polynomial is possible or not. Fortunately,  we 

can see the relative degree of the dr iving-point  

impedance or admittance by inspection when the 

bond graph prototypes are used in synthesizing 

dynamic systems. In case of the bond graph 

prototypes with feedforward paths alone, the 

relative degree of a system function is taken as the 

smallest one in the feedforward bonds. And the 

relative degree for the bond graph prototypes 

with both feedforward and feedback paths is 

equal to that of components in the feedforward 

bonds (Park and Kim, 1997). These two observa- 

tions on the bond graph prototypes will be basi- 

cally used in this paper, in particular, to develop 

the analytical synthesis method. However, the 

main contribution of this paper is the direct 

synthesis where the procedure of dynamic system 

synthesis is performed directly on the bond graph 

prototypes with no help of the above observations 

and in addition any mathematical ]handling in 

choosing the coefficients of numerator and 

denominator  polynomials. 

4. Dynamic System Synthesis Using 
Bond Graph Prototypes 

The bond graph prototypes can apply to the 

analysis of dynamic systems in the frequency 

domain effectively, just as having shown their 

applications through a passive tuned isolator as 

an example in the paper (Park and Kim, 1997). 

Where the transfer function of a system in ques- 

tion can be obtained directly from its physical 

structure of the bond graph. Now, we develop in 

this section the two procedures for synthesizing 

bond graphs from an already specified function 

given a impedance or admittance form. 

The first method is basically related to circuit 

synthesis method. Based on the PFE and the CFE 

and the two observations on relative degrees 

mentioned in the earlier section, and the zero and 

characteristic dynamics obtained from the bond 

graph prototypes, given specifications are broken 

into component parts such that these ,components 

remain positive real to ensure a passive system. In 

particular, if the specification involw.~s any feed- 

back structure this method is more adequate in a 

theoretical or analytical viewpoint than that 

introduced by Redfield and Krishnan (1993). 

The second method is the cardinal point of this 

paper, which will make the bond graph proto- 

types more applicable to dynamic system synthe- 

sis as well as modeling and analysis of dynamic 

systems. This method is perforrned from the direct 

manipulat ion of the bond graph prototypes, 

without the selection of appropriate  parameters 

the first method must necessitate. Then we will 

call the first method as the analytical synthesis 
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and the second as the direct synthesis for effective 

representation. 

4.1 The analytical synthesis 
It is generally known that the behavior of all 

dynamic systems can roughly be represented by 

the combinations of feedforward and feedback 

structures in their corresponding physical  

domains. We also know that the bond graph 

techniques are widely used not only in the hard- 

ware level at which the physical realization of  a 

system can be implemented more comfortably 

than the other pictorial ones such as block dia- 

gram method and signal flow graph, but also in 

the abstract level at which the manipulat ion for 

finding the mathematical descriptions of a system 

such as transfer function models and state space 

models can be practicable without loss of physical 

similarity. This is the main reason why the bond 

graph is used in the analysis and synthesis of 

dynamic systems. Synthesizing a given specifica- 

tion into bond graphs is simply reduced to the 

reticulation of  the desired function into compo- 

nents until each of their components can be suit- 

ably represented by basic 1-port  elements and 

then completely assembled together with the best 

selected junctions of bond graphs, at which time 

some fundamental laws of physics such as conti- 

nuity and compatibil i ty equations must be not 

violated. However, it sometimes needs the help of 

an excellent engineer armed with rich knowledge 

about physical intuitions for dynamic systems and 

implicit topologies covered in the bond graph 

techniques. These difficulties in synthesizing 

dynamic systems are now resolved simply in this 

and following sections by introducing the bond 

graph prototypes 

Figure 5 shows the bond graph prototypes 

where they are classified with the feedforward and 

feedback categories with respect to a given specifi- 

cation of admittance and impedance forms. If 

given specifications are expanded only into the 

feedforward terms, then they can be formed by 

summing the terms in Fig. 5(a) and (c) as fol- 

lows: 

SYss(s) =~.  Y,.(s) Y(s )  + l / Z ( s )  (5) 
i : I  

Admittance 
SY(s) 

Impedance 
SZ(s) 

Feed forward Feedback 

(a) /~,Y(s) 

z-4,) 

(c) Z(s) 

I  1x'7 %, 
Y(S) 

(b) Z(S) 

~YY(s) 
(a) / ( s )  

I \ o  % 
Z(s) 

Fig. 5 The bond graph prototypes for feedforward 
and feedback expansions. 

n Z S Z s y ( S ) = Z  i ( s ) = Z ( s ) + l / Y ( s )  (6) 
i=1  

where SYss (s) and SZss (s) denote the driving- 
point  admittance and impedance, respectively, 

when they both possess the feedforward terms 

alone. The middle side of Eqs. (5) and (6) imply 

the general cases having the n th feedforward 

paths. With the bond graph prototypes, however, 

only the two terms (or paths) are required to 

synthesize a given specification as shown in the 

right side of the equations because the bond graph 

prototypes treat each term appeared after reticula- 

tion as another specification which in turn, unless 

its physical equivalent is clearly recognized, is 

split again into two components only. And the 

inverse forms of Eqs. (5) and (6) have no other 

meanings than needed in the following section 

and then simply mean y1 = Y(s ) ,  Y z = l / Z ( s )  
in Eq. (5) and ZI~-Z(s) ,  Z 2 = I / Y ( s )  in Eq. 
(6). 

Eqs. (5) and (6) suggest that given specifica- 

tions regardless of the forms of impedance and 

admittance can be reticulated into partial fraction 

components or it can be expanded into the sum of 

parts with a common denominator. Of course, the 

components must remain positive real for a pas- 

sive synthesis. Note that with the bond graph 

prototypes there are no any nuisance in thinking 

over the selection among junction types because 

they are already fixed as in Fig. 5. In the impedan- 

ce synthesis, for example, the 1-junction serves as 
a feedforward junction since a flow is input from 
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the external bond. And the 0-junction is appro- 

priate for the admittance synthesis. 

On the other hand, a given specification can 

also be broken into both feedforward and feed- 

back parts as shown in Fig. 5 (b) and (d). Unlike 

the reticulation of specifications into feedforward 

parts only, the feedback expansion is rather com- 

plex since the input signal at the dr iving-port  

does not take to piece easily in the compact form 

such as Eqs. (5) and (6). According to the paper 

(Park and Kim, 1997), the admittance specifica- 

tion SYj-b(s) and the impedance specification 

SZib(s) are, respectively, expanded as 

Y(s)  (7) 
SYjb (s) = 1  + Y(s )  Z (s) 

Z ( s )  (8) 
SZjb(s) = l + Z ( s )  Y(s)  

where Z(s)  in Eq. (7) and Y(s) in Eq. (8) are 

feedback parts, while Y(s)  in Eq. (7) and Z(s)  
in Eq. (8) are feedforward parts. 

The junction types are also automatically as- 

signed even in the feedback expansion as in the 

feedforward expansion. However, while the 

approaches to seek the terms involved in Eqs. (5) 

and (6) may be relatively uncomplicated which 

often use the partial fraction expansion or the so- 

called common denominator expansion just 

above mentioned, the factors contained in Eqs. 

(7) and (8) cannot be easily extracted from a 

given specification SY)b(s) or SZI~(s) since the 
equations have a non-unique inversion. For this 

reason, we recollect some results on system func- 

tions obtained from the bond graph prototypes 

and some observations on relative degrees stated 

in the earlier section in order that the procedure 

for the feedback expansion becomes to be more 

analytical and conceptual one. 

If the given impedance SZib(s) is reticulated 

into the two components Y(s)  and Z(s)  of Fig. 

5(d) to provide its physical behaviour in the 

hardware level, then we can first rewrite the feed- 

back component Y(s) in Eq. (8) in terms of  the 

zero dynamics SZn(s) and the characteristic 

dynamics SZa(s) of SZ1b(s) as 

Y (s) = SZs~ (s) '-- Z (s) < 
SZ~ (s) Z~ (s) - SZ~ (s) Z~ (s) 

=: SZ~(s)Z~(s) (9) 

where Zn(s) and Za(s) represent the numera- 

tor and denominator polynomials of tile feedfor- 

ward component Z(s)  respectively. From Eq. 

(9), it can be known that the determination of Y 

(s) depends exclusively on how Z(s)  may be 

selected to guarantee the positive real conditions 

that both Z(s)  and Y(s) are stable and mini- 

mum phase systems, and in addit ion the relative 

orders of them must be between -1 and 1. Note 

that the relative order of Z (s) is equal to that of 

SZj.~ (s). 
One way to solve for Y(s )  and Z ( s )  from a 

given impedance SZfb(s) is to eliminate one of 

the two polynomials Zn (s) and Za (s) in the right 

side of Eq. (9) so that the order of  Y(s)  can be 

reduced to that smaller than the characteristic 

dynamics SZa(s) by deliberately choosing the 

coefficients of the contributing component after 

elimination. Based on the fact that the zero 

dynamics of a given impedance is found in the 

bond graph prototypes as the feedforward compo- 

nent Z (s) ,  we choose the numerator polynomial  

Zn(s) as a factor of SZ,,(s) such that SZn(s) = 
Z,,(s)SZnr(S) where SZnr(S) is the remaining 
factor of SZ,, (s). With this scheme, the Zn (s) can 

be cancelled and Eq. (9) becomes 

Yn(s) SZd(s)  - S Z ~ r ( s ) Z d ( s )  
Y ( s ) - -  }~(s)  - S ~ ( ~  

(10) 
Note that the form of the polynomial  Zd(s) in 

the right side of Eq. (10) which is not yet known 

can be inferred from the above scheme and the 

fact that Z ( s )  (=Z~(s)/Z~(s))  has the same 

relative degree as SZ  (s) which is already known. 

Thus, by choosing the coefficients of Z~(s) such 

that the order of  Y~(s) is smaller than that of 

SZd(s), the given impedance SZ(s) can be 

reticulated into the feedforward component Z (s) 

and feedback component Y(s) ,  the former hav- 

ing a reduced order compared to SZ(s)  and the 
latter consisting of a numerator whose order is 

less than SZa (s) and the denominator of SZ~ (s). 
Now, an example is offered to help understand 

the analytical synthesis so far explained. Consider 

a desired function of impedance as 

56sZ+ 100s + 14 
SZ(s ) - -  12sZ+ 15s+3  (11) 
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The form of Eq. ( l l )  is generally used to 

design passive filters such as notch or band pass 

types. And the passiveness of this impedance can 

be easily verified by its stability (poles located at 

-0 .25  and -1) and the energy-dissipative nature 

the Nyquist plot of Eq. (11) implies which does 

not trespass the left half  of the complex plane at 

all. To reticulate Eq. (11) into terms or factors 

which must be recognized by the basic elements of 

bond graphs for realization in the hardware 

domain, the PFE is first applied just as the 

network synthesis in the electrical field has done. 

But because the orders of the numerator and 

denominator in Eq. (11) are identical, Eq. ( I 1 ) i s  

previously divided with synthetic division into 

SZ(s )  : ~ - - ~  10s 
4 s 2 + 5 s +  1 (12) 

Applying the PFE to the last term of the right 

side of Eq. (12) gives 

SZ(s )  14~  10/3 5/6 
s + l  s + l / 4  (1"3) 

In Eq. (13), the negative term is not positive 

real and cannot be synthesized passively. Then 

the first and last terms are combined together for 

passive synthesis into 

14/3s + 1/3 10/3 
S Z ( s ) - -  8 + 1 / 4  -+ s + l  (14) 

Equations (12) and (14) are the final results of 

the feedforward expansion, both having only 

positive real components, and their synthesis in 

terms of bond graphs are in Fig. 6(a) and (b) 

respectively. Next, the second term in Eq. (12) 

and both terms in Eq. (14) are further synthesized 

by the feedback expansion technique as explained 

above so that the concluding components can 

directly be realized by bond graph elements. For  

the second term of Eq. (12), factoring the numer- 

ator SZ ( s ) =  10s into the numerator of the feed- 

forward component Z, (s) = 10 and the remaining 

numerator SZn,-(s):s  yields the denominator of 

the feedforward components of the form Zd (s) -- 

C~s + Co because the relative degree of Z (s) must 
be 1, and then makes Eq. (10) to be 

Y (s) = ( 4 -  C1) sz+ ( 5 -  Co) s + 1 
lOs (15) 

S Z ( s ) I  

14 

, c 4 z  ;. a 
" - 1  

"Qx~ Z 2.  

(a) 

l O s  
4 s z + 5 s +  1 

1 4 s / 3  + 1 / 3  
s + 1 / 4  ,<,,,4 z[" 

S Z ( s ) [  "~ 1 

Z 2 .  
�9 l o / a  

(b)  s + a  

Fig. 6 Bond graph syntheses of Eqs. (12) and (14). 

Equation (15) means that the feedback compo- 

nent Y(s)  is absolutely determined by how the 

coefficients of Zd(s) may be selected. Synthesiz- 

ing a function can be said to reduce the order of 

the function continuously. Thus, C1 is chosen as 4 

to cancel the second order term in the numerator 

polynomial  of Y(s ) ,  and Co is selected to sim- 

plify the denominator polynomial  of Z(s )  as 

zero. The Z (s) and Y (s) for the feedback expan- 

sion of the second term of Eq. (12) can then be 

searched as follows: 

10 
Z (s) - 4s (16) 

Y (s) - 5 s + l  
10s (17) 

Since the feedback component Y(s)  in Eq. (17) 

shows the same order of the numerator and 

denominator polynomial,  however, it can be 

again reticulated into two terms simply with 

synthetic division as 

l 1 ( 1 8 )  
Y(s)  = ~ - - t  lOs 

With these results the analytical synthesis is com- 

plete. Eqs. (12), (16) and (18) represent the 

completed syntheses of the given impedance speci- 

fication of Eq. (11). Note that with the bond 

graph prototypes as in Fig. 5 we need not to 

worry about what types of junctions of bond 

graph are right at each step of reticulation. Its 
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SZ(s)l 

1 4 / 3  I/2 
R, 

"~ 11 ~ " ~ 0  "~"1 I :  1 / 1 ~  s 

C-~: 1o/4 s (a) 

s / t o . .  1 0 / 3  
" 

SZ(s)l "~ 11 ~ 0 

R.~ 
1u 

Fig. 7 

(b) 

28/15 

~"1 1 "~l I :  t 5 / a 9 2  
s 

Complected syntheses of Eqs. (12) and (14). 

R I  

C R2 I 
f(t)zvelocity input 

(a) 

~f(t):velocity input v i s c o u s  f r i c t i o n ,  R3 

(b) 

Fig. 8 Mechanical realizations of synthesize bond 
graph. 

work has done very straightforwardly. 
Figure 7(a) shows the completed synthesis of 

Eq. (I 1) where each component is expressed by 

the basic elements of bond graph which involve 

the energy-storage elements of C-  and I-types 

and the energy-dissipative elements of R-type. 

Another synthesis of Eq. (11) using Eq. (14) 

rather than Eq. (12) is also appeared in Fig. 7 

(b). The procedure generating Fig. 7 (b) is exact- 

ly the same as that used to deal with the second 

term of Eq. (12). At this point, it must be emphas- 

ized that, whatever different they may be, both 

structures in Fig. 7 provide the same behavior. In 

other words, given specifications can be realized 

as having multiple configurations depending on 

the path of reticulation as in the above example. 

The bond graph synthesis, unlike electrical net- 

work synthesis, can offer additional reticulation 

possibilities which may be useful in handling 

some constraints between a desired specification 

and the renewable system which is already con- 

figured. The physical realizations of Fig. 7(a) 

and (b) in mechanical domain are possible as in 

Fig. 8(a) and (b), respectively. 

4.2 The direct synthesis 
In this section, it is shown that the bond graph 

prototypes are simple and effective tools for 

synthesizing a given specification into feedforwar- 

d and feedback parts. In the previous section, it 

was presented that the method to find feedforward 

components only is relatively succinct, while for 

the feedback expansion the feedforward and feed- 

back components cannot be easily fixed and 

sometimes involve some delicate problems in 

obtaining their solutions. According to the 

reticulating path and parameter selection in feed- 

back and feedforward components, in particular, 

multiple syntheses are possible such that an 

automated program is necessarily required to 

choose one of the whole syntheses in view of 

optimizing the existing configurations. 

The direct synthesis starts from the investiga- 

tion of  the mutual relations between the bond 

graph prototypes as shown in Fig. 5. And subse- 

quently, it is used appropriately that impedances 

and admittances are just reciprocal in their func- 

tional roles, or equivalently, in their input-output  

behaviors. From the close examination of the 

bond graph prototypes, it is concluded to say that 

first, the S}%(s) in Eq. (7) indicating the feed- 

back expansion of  a given admittance is nothing 

but the inverse of SZss(s) in Eq. (6) which 

represents the feedforward expansion of a given 

impedance. Second, the SZib(s) in Eq. (8) in- 

dicating the feedback expansion of a given 

impedance is nothing but the inverse of' SY)j-(s) 
in Eq. (5) which represents the feedforward 

expansion of a given admittance. 

These results may be thought of as a matter of 

course and can be treated as trivial ones. How- 
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ever, they must be regarded as one of the most 

important principles in manipulating dynamic 

systems in the hardware level for their analysis 

and synthesis. They suggest that the structural 

transformation inside one physical system is 

always practicable without the help of a well-  

developed mathematical formalism. Bearing in 

mind the reciprocal relations of impedances and 

admittances and the above results, suppose a 

given impedance S Z  (s) is synthesized into feed- 

forward and feedback components like the forms 

in Fig. 5 (d). By simply reversing the numerator 

and denominator of S Z  (s) we are now ready to 

apply the feedforward expansion technique to the 

corresponding admittance S Y ( s ) .  Note that the 

procedure for feedforward expansion is far more 

easier than that for feedback expansion as 

mentioned in the earlier section. Subsequently, 

the S Y ( s )  can be divided without any trouble by 

applying the PFE  or the common denominator 

expansion (CDE) into two terms Y ( s )  and I / Z  
(s) which must be the forms of admittances and 

be attached together with S Y ( s )  through the 0 

- junct ion as shown in Fig. 5(a).  In fact, the 

extraction into two admittances means that the 

feedback expansion of S Z ( s )  itself makes the 

direct synthesis completed, except for determining 

which component of the two must be selected as 

feedforward one and then reversed, for example, 

Z (s) in Fig. 5 (d). This is why the second reverse 

of S Y ( s )  to retrieve the original impedance SZ  
(s) gives the same effect as the structural transfor- 

mation from Fig. 5 (a) to Fig. 5 (d) directly. 

The conventional assignment of causality in 

bond graphs is often classified with the integral 

and derivative ones. In the modeling viewpoint, 

the method of assigning causality to an element to 

be considered is usually based on allowing the 

element to be independent element in order to 

immediately attain the state space model in the 

time domain. However, since the frequency- 

dependent impedance and admittance are deeply 

associated with the bond graph analysis and 

synthesis of dynamic systems, it is convenient to 

force the role of causality to indicate what signals 

are entered into and flowed out of  the element. 

Thus, in case of analyzing and synthesizing a 

and ,long Shik Kim 

dynamic system with the bond graph prototypes, 

changes in the role of input and output are 

nothing but changes in the causality assignment, 

especially, in linear systems. Therefore either of 

the two components can even be reversed so that 

the component is able to determine the common 

variable (the effort variable in this case) on the 

feedback junction (the 0-junction),  resulting into 

the bond graph with integral causality. If another 

component is reversed then the resulting bond 

graph is with derivative causality. Note that 

whatever kind of causality may be generated, both 

the bond graphs represent the same physical struc- 

ture and dynamic behavior seen at the driving- 

port, which implies that there are only expres- 

sional gap between their governing equations 

such that the bond graph assigned with integral 

causality produces a set of differential equations 

and the bond graph with derivative causality 

yields a set of integral equations (Karnopp, 

1983). On the other hand, the structural transfor- 

mation between Fig. 5(c) and Fig. 5(b) is also 

used to synthesize a given admittance into feedfor- 

ward and feedback components. In this case, the 

procedure similar to that stated just above is still 

serviceable. 

Now, Let us evaluate the powerful strength of 

the direct synthesis relative to the analytical syn- 

thesis in applying to Eq. (12) of which we will 

mark the first term ZI(S) and the second Zz(s) as 

in Fig. 9 (a). Reversing the Z1 (s) and putting the 

CDE on the result yield 

1 4 s + 5  1 
Zz(s) -- Yz(s) -- 10 ~ 10s (19) 

Assume that the Yz(s) in Eq. (19), the inverse 

of Z2(s), is expanded into Z 3 - 1 ( s ) = ( 4 s + 5 ) / 1 0  

and Y a ( s ) = l / ( 1 0 s ) .  Note that Eq. (19) has the 

same structure as in Fig. 5(a).  And Z.j(s) is 

reversible and then becomes the feedforward com- 

ponent of Z2 (s).  From the impedance and admit- 

tance forms for the basic elements of bond graphs, 

Ya(s) can be recognized as inertia I ( s )  with 

integral causality and Za(s) as a sort of a 
dynamic system showing a damped-capaci tance 

behavior. Again, since Z3( s )=  10 / (4 s+5)  is too 

vague to be realized by the basic bond graph 
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Z~(s) 
Z~(s) t 

I ~ I ~ 0 ~ Z~s) 
1 ~ Z4s) // [ 

Zds) X 
Ys(s) 

(a) (b) 

14 1 
3 2 

Z~(s) y~(s) R,(s) R~(s~ 

~-a~ 1 ~---.~. o k----~, o I- .-~ z4(s ) I---.~. l 1-.-'~ o I----~ c (sl : ~ -  s 

7.ds) Z~(s) 
ygs) l(s) 

1 / 1 0 s  

(C) (d) 

Fig, 9 History for the direct synthesis of Eq. (11) 

elements, the procedure used to get Eq. (19) is 

applied to it, and the result is 

1 2 s ,  1 (20) 
Z3-(s)- U t T  

Let Z4-~(s) be 2s/5 and Y4(s) be 1/2 in Eq. 
(20). This also means the Z4(s)=5/(2s) is the 

feedforward term of the Z3(s) as shown in Fig. 9 

(c), where the Z4(s) plays the same role as 

capacitance C (s) with integral causality and the 

Y4(s) as resistance in the admittance type. The 

final synthesis in which more general notations of 

bond graphs are inserted is in Fig. 9(d).  

For  the sake of contrast, consider that the roles 

of input and output are changed each other. If the 

Y2(s) in Eq. (19) has two terms such that Z3 -~ 

(s)=l/(lOs) and ya(s)=(4s+5)/lO, then it 

can be easily found that the Z3(s)= 10s becomes 

the feedforward element in the form of  impedance 

and the admittance ~ ( s )  is again reticulated 

with synthetic division into another two feedfor- 

ward terms Y4(s):2s/5 and ~ ( s ) = l / 2  as 

shown in Fig. 10(a). And the completed synthesis 

is in Fig. 10(b). Of course, both the structures in 

Fig. 9(d) and Fig. 10(b) describe the same 

physical system, for example, as in Fig. 8 (a). It is 

no wonder that there are seemingly differences in 

the causality assignment and the forms of  

impedance and admittance. This is merely the 

results from the reflection of changing signals of 

input and output. 
The direct synthesis is a very concise method in 

its usage and can be a rather scientific method in 

14 1 
3 2 

I---..~ 1 p-....~ 0 ....-~ 0 --...-~ y~(s) ~--...~ a F.--~ 0 - - . .~  C (s) : - ~ -  

7~s) 
Z~(s) I(s) 

1 0 s  

(a) (b) 

Fig. 10 Alternative history for the direct synthesis of 
Eq. (11) 

managing bond graph prototypes systematically 

to obtain its reliable result. Therefore, if the direct 

synthesis developed in this paper is used to repre- 

sent a given specification as the bond graph 

structure, it is obvious that the method removes 

some troublesome of selecting the coefficients in 

feedforward and feedback components and how 

to determine the synthesizing path, which are 

inherent attributions of the analytical synthesis, as 

stated in the earlier section. 

5. Conclusions 

Two dynamic system synthesis methods using 

bond graph prototypes have been proposed. 

These methods demonstrate some outstanding 

advantages compared to electrical network syn- 

thesis and any existing ones. The analytical syn- 

thesis shows its abilities in reticulating a given 

specification into feedforward and feedback com- 

ponents (we called this the 'feedback expansion' 

in this paper) relative to electrical network syn- 

thesis. And relative to an existing method like in 

the paper (Redfield et al., 1993), this method also 

exhibits its strengths in determining what types of 

the bond graph junctions and causalities must be 

selected to satisfy the dynamic behavior of a given 

specification physically. The second synthesis 

method developed in this paper was highlighted 

as the direct synthesis. This method not only 
rescues the tedious and annoying problems of  

choosing the coefficients in the reticulated compo- 

nents, but also gives some engineering intuitions 

into the physical system which is wholly de- 

scribed by the given specification. 

Al l  these benefits are due to the bond graph 

prototypes which might have a great effect in 
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analyzing dynamic systems in the frequency 

domain, for example, in extracting transfer func- 

tions directly from them. The bond graph stan- 

dards that Dr. Paynter originates in 1961 and that 

has been applied to various engineering systems 

by many researches are said to be modeling-  

oriented tools, while we would expect the bond 

graph prototypes to be analysis and synthesis 

oriented tools, at least after some years. To 

become so, further work of the bond graph proto- 

types is necessary to make them more refined and 

skilled as much as the bond graph standards have 

done, and to find their wide applications. 
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